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Abstract: 10 

Measuring structural vibrations help assess dynamic performances of civil structures and 11 

infrastructure. Although conventional displacement sensors have been widely adopted, they are 12 

contact-based methods which lack scalability. Recently, computer vision (CV) has been applied 13 

as a noncontact method to measure displacements. However, fast speed of structural vibration 14 

(e.g., in shake table tests) can inevitably cause motion blur that imposes challenges in all image-15 

based object/feature detections, especially for normal portable cameras (without high-speed 16 

shutters). To address such issue, the study proposed a multi-vision, full-field sensing framework 17 

with affordable cameras using a novel global-local detection and deblurring (GLDD) module, 18 

which was designed with a generative adversarial network (GAN)-based deblurring model to 19 

enhance detection efficiency and accuracy by restoring blemished videos from multiple 20 

perspectives. Rauch-Tung-Striebel (RTS) smoother was studied for data fitting using incomplete 21 

observations caused due to severe motion-induced blurs. A shake table test was conducted on an 22 

aluminum frame with cameras and conventional sensors monitoring the structural vibrations. 23 

Fiducial markers were used to track the movement of the key locations on the structure. Results 24 

showed that the proposed method is satisfactory to monitor shake table tests when compared to 25 

conventional measurements with root-mean-square errors of 0.51-0.95 mm. The proposed 26 

deblurring module restored misdetection by 92.1%, 50.6%, and 25.2% for mild-, medium-, and 27 

severe-level motion blurs, respectively. Smoother-based data fitting outperformed filter-based one 28 

when dealing with highly blemished images. The proposed monitoring system with GLDD and 29 

RTS smoother-based data fitting provides a robust measurement solution when dealing with 30 

motion blurs. 31 
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shake table test, motion blur, computer vision, generative adversarial networks, structural health 33 

monitoring. 34 

 35 

 36 

Highlights:  37 

§ proposed a multi-vision displacement measurement approach with global-local detection and 38 

deblurring (GLDD) module using GAN-based deep deblurring method to address the motion 39 

blur issue  40 

§ developed an automated algorithm for affordable cameras to monitor displacement in shake 41 

table tests, including feature detection, global-local image deblurring, multi-video 42 

synchronization, and filter/smoother-based data fitting 43 

§ studied the performances of different data fitting methods on displacement measurements for 44 

severe motion blur cases using Kalman filter and Rauch-Tung-Striebel (RTS) smoother 45 

§ provided the guidelines for using the proposed approach and affordable cameras to achieve 46 

displacement monitoring in shake table tests 47 

1. Introduction  48 

Monitoring structural responses (e.g., displacement, acceleration, strain) is used to assess the 49 

behavior of civil structures. Measured data from experimental tests (e.g., quasistatic test, shake 50 

table test) are usually influenced by the characteristics and limitations of the adopted measurement 51 

methods (Zona, 2020). Structural responses are commonly measured using wired, contact sensors 52 

at desired locations of a structure. Non-contact measurement methods take one step further by 53 

avoiding the physical contact between sensor and structures, such as strain sensors using computer 54 

vision (CV) techniques (e.g., digital image correlation (del Rey Castillo et al., 2019), 55 

photoluminescence techniques (Sun et al., 2019), and laser Doppler effect (Xu et al., 2019). In 56 

addition, existing displacement measurement methods include linear variable differential 57 

transformer (LVDT), real-time kinematic (RTK) global navigation satellite systems (GNSS) 58 

/global positioning system (GPS) sensors (Bezcioglu et al., 2023), terrestrial laser scanner (Kogut 59 

& Pilecka, 2020), and double-integration from acceleration (Zheng et al., 2019). However, these 60 

displacement measurement methods exhibit specific limitations, such as low-sampling rate (Ma et 61 

al., 2022) of RTK-GNSS, limited accuracy in GPS measurements (Rychlicki et al., 2020), high-62 
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noise level in terrestrial laser scanner (Muralikrishnan, 2021), (potential) large low-frequency drift 63 

using double integration of accelerations (Zheng et al., 2019), and deployment cost of laser 64 

Doppler-based method (Chu, 2005). In addition, accessibility issues (especially in long bridges 65 

and high-rise buildings), cost escalation for up-scale measurement, range constraint, and generally 66 

the requirement for a stable installation platform are the complexities to consider when utilizing 67 

LVDTs. 68 

Vision-based methods were studied to obtain displacement measurement and overcome some 69 

of the limitations. In recent years, the technological progress in computing power, computer vision 70 

algorithms (Sun et al., 2022), and high-speed cameras (Zhang et al., 2016) attracted more attentions 71 

on the direct measurement methods (Greenbaum et al., 2016) and further applications on the 72 

measurements [e.g., system identification (Yang et al., 2019), finite element model updating (Dong 73 

et al., 2020), damage detection (Guo et al., 2019)] of vision-based methods. Vision-based 74 

applications in shake table tests started from early 2010’s by adopting early-stage feature detection 75 

algorithms, (large-size) primitive artificial tags, and localization methods to measure structural 76 

displacements (Choi et al., 2011). Structural vibration of full-scale civil infrastructures or large 77 

scaled models are usually neither in high speed nor in high frequency [e.g., frequency range for 78 

most civil infrastructure is well below 70 Hz (Zona, 2020) or even much lower as several Hz]. 79 

Therefore, most of the time a portable camera with a low frequency capacity [e.g., 30 frame-per-80 

second (fps)] is sufficient and the blur due to structural vibration will not be a serious issue for 81 

displacement monitoring. Most of the current studies focused on the further structural health 82 

monitoring (SHM) applications of CV-based displacement measurement (e.g., behavior analysis, 83 

load estimation, modal identification, model updating, damage detection) (Dong & Catbas, 2021) 84 

and much fewer studies focused on solving practical issues in monitoring applications in shake 85 

table tests, such as perspective selection (e.g., single-vision, dual-vision), camera location/pose 86 

limitation, illumination condition, occlusion, video frame asynchronization (if there is multiple 87 

cameras), and motion-induced image blur.  88 

Some of these issues can be addressed in a controlled lab environment during a shake table 89 

test, for example, using proficient direct current (DC) lights to provide adequate illumination and 90 

using post-synchronization technique to solve asynchronization issue. However, some other 91 

challenges remain to be resolved. For example, experimental studies on structural dynamics in 92 

particular, can suffer from motion-induced image blurs. Because shake table tests are conducted 93 
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in lab environments and researchers may use smaller-scale models subjected to more intense 94 

excitations especially when near resonance, making collected video data much more susceptible 95 

to the issue of motion-induced blur. Most of time researchers would adopt pricy, high-speed 96 

cameras (~$8-30k, 200-2000 fps) to avoid the motion blurs in their CV applications for shake table 97 

without solving the issue. However, even with the most advanced camera with high-speed shutter, 98 

the motion blur issue is still there when dealing with any fast-moving object relative to the camera 99 

shutter. The studies on image deblurring using post-processing techniques for motion-induced 100 

blurs are found to be very rare if there is any. Hence, a remedy solution is in great need to address 101 

the negative impacts from motion blurs for most current shake table users with affordable 102 

measurement setups, such as portable cameras with normal speed (~$1-2k, 30-60 fps). 103 

The objective of this study was to develop a vision-based displacement monitoring framework 104 

for shake table tests that is robust to the motion blur issue. The study proposed a multi-vision 105 

approach with the ability to remediate motion-blur effect using deblurring module and data fitting 106 

module for accurate displacement monitoring. This paper firstly introduced a multi-vision sensing 107 

approach with a global-local detection and deblurring (GLDD) module to reduce the effect of 108 

motion blur and a data fitting module to estimate midsection based on incomplete observation. 109 

Secondly, the study designed a shake table test to evaluate the proposed sensing approach on an 110 

aluminum frame structure with different severity levels of vibration. Further, the discussion based 111 

on the augmented measurements and data fitting was conducted and useful guidelines was 112 

provided as well. In the end, the paper provided a summary for this work as well as its limitation 113 

and future work. 114 

2. Problem Statement  115 

(1) Motion-Induced Blur in Images  116 

Typical digital image generation includes two steps: image signal acquisition and color 117 

rendering with image signal processor (ISP). In a classical pin-hole camera model (Ma et al., 2004) 118 

(Fig. 2a), a 3D point in the World Coordinate System (WCS) is denoted as 𝑃 and the point is 119 

visualized as a pixel (𝑝!) projected onto the camera sensor plane in a 2D Sensor Coordinate System 120 

(SCS). The relationship of 𝑃 and 𝑝! can be expressed in a concise form as: 121 

𝐱" #!~𝐌$%%	𝐌&'()[𝐑|𝐓] 𝐗*+  (1) 

Acc
ep

ted
 by

 M
ea

su
rem

en
t



 

5 

where M$%%  and M&'()  are affine matrix and projection matrix containing intrinsic parameters, 122 

[𝐑|𝐓]  is the joint rotation-translation matrix (containing extrinsic parameters), 𝐱" #! =123 

/ 𝑥" #′ , 𝑦" #′ , 14
,

 and 𝐗+ * = [ 𝑋+ *	, 𝑌+ *	, 𝑍+ *	,1	], denote the corresponding homogeneous 124 

coordinates, respectively. 125 

 126 
Figure 1. Schematic views of (a) single-perspective setting with motion-induced blur on the sensor 127 
coordinate system (SCS), and (b) dual-perspective setting with the same structure feature observed by both 128 
cameras. 129 

Image blurs can result from the relative movement between camera and object/scene and it 130 

can be formulated as the accumulation of photons on camera sensors during the exposure time: 131 

𝐼-(𝑥, 𝑦) = ISP>? 𝑓(𝑡, 𝑥, 𝑦)	𝑑𝑡
."

.#
C (2) 

where 𝐼- denotes the blurred image, [𝑡/, 𝑡0] represents the time window for exposure, 𝑓(𝑡, 𝑥, 𝑦) 132 

represents the photon response at pixel location (𝑥, 𝑦) at time instant 𝑡, and ISP(∙) denotes the 133 

image signal processor operator (e.g., white balance, color correction). 134 

Motion-induced image blurring (denoted in Figure 1a) is influenced by the shutter speeds of 135 

cameras and the relative movement speeds between cameras and recorded objects. Motion blurs 136 

can be categorized into local blurs and global blurs. Global blurs usually occurs with a moving 137 

camera that is usually encountered in the application of robotic vision (Zeng et al., 2020) and 138 

simultaneous localization and mapping (SLAM) (Gao & Zhang, 2021). While local blurring results 139 

from moving objects in static backgrounds. Local blur issue occurs in the CV application for shake 140 

table tests where the table base and the mounted dynamic structures are the foreground in motion 141 

and cameras are fixed statically with the background. 142 
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Artificial features, such as fiducial markers, have strong (black-white) contrast and sharp 143 

features with straight edges for robust detection compared to natural features. However, severe 144 

structural motion during a shake table test can make fiducial marker detection in blurred images a 145 

really challenging task. Motion blur can deteriorate the marker detection performance using image 146 

processing algorithms (e.g., edge detection, blob detection). Deblurring methods can render clearer 147 

images for actuate feature detection. The underlying problem of the image deblurring part in this 148 

study is to restore clearer and sharper visual features on images for accurate detections and 149 

displacement computation. 150 

(2) Motion Estimation for Severe Blur  151 

In practice, severe motion blur on images can cause misdetections even when deblurring 152 

technique is implemented. For example, when the structure is subjected to vibration with a 153 

frequency close to the natural frequencies, structural vibration becomes much severer making the 154 

top floor shaking faster than the other floors. A post processing of data fitting is needed to 155 

complement the measurement in these cases. Although linear interpolation and/or spline 156 

interpolation can be used as basic data fitting considering the continuous movement of structure 157 

using nearby measurements, these interpolation methods neglect the system information and 158 

sometimes can yield wrong estimates at the misdetection instances. 159 

Assume a measurement from a shake table test is denoted as 𝐲1 at instance 𝑡1(𝑘 = 1,2, … , 𝑇) 160 

and the corresponding state is denoted as 𝐱1. For example, the measurement includes displacement 161 

measurement in x direction 𝐲1 = 𝑑2(𝑡1) for a 1D shake table test and the state include both 162 

displacement and velocity, such as 𝐱1 = [𝑑2(𝑡1), 𝑑2̇(𝑡1)]. To model the motion, a state vector 163 

𝐱1 ∈ ℝ3×/ denotes the system state and the linear dynamic system can be expressed as: 164 

𝐱1 = 𝐀15/𝐱15/ + 𝐪15/ (3) 

where 𝐱1 ∈ ℝ3×/  is the state (as a vector), 𝐪15/ ∈ ℝ3×/  is the process noise with Gaussian 165 

probability distribution 𝐪15/~N(𝟎, 𝐐15/) , and 𝐀15/ ∈ ℝ3×3  denotes the dynamic 166 

model/transition matrix. 167 

The measurement equation is: 168 

𝐲1 = 𝐇1𝐱1 + 𝐫15/ (4) Acc
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where 𝐲1 ∈ ℝ6×/  is the measurement, 𝐫1 ∈ ℝ6×/  is the measurement noise with Gaussian 169 

probability distribution 𝐫15/~N(𝟎, 𝐑15/) , and 𝐇1 ∈ ℝ6×6	 denotes the measurement 170 

model/matrix. 171 

Successful observations are denoted as (𝐲1)7 ≡ (𝐲V1)7 , (𝑘, 𝑖) ∈ 𝒦: 172 

(𝐲1)7 = (𝐇1𝐱1 + 𝐫15/)7 															(𝑘, 𝑖) ∈ 𝒦 (5) 

where 𝒰 = {1,2, … , 𝑇} × {1,2, … ,𝑚} denotes the universal set of scalar outputs corresponding to 173 

all possible observations, 𝒦 ⊆ 𝒰 denotes the set corresponding to successful observations, ℳ 174 

denotes the set corresponding to failed/missed observations. 𝒦 ∩ℳ = ∅ and 𝒦 ∪ℳ = 𝒰. 175 

Severe structural vibrations sometimes can make motion blur so blemished that CV-based 176 

measurements cannot be obtained successfully even after using some image deblurring techniques. 177 

For discussion, these failed/missed observations are denoted as (𝐲1)7 ≡ (?1 )7 , (𝑘, 𝑖) ∈ ℳ. The 178 

underlying mathematical problem of the data fitting part in this study is to estimate failed/missed 179 

measurements (?1 )7 , (𝑘, 𝑖) ∈ ℳ based on the successful observations, (𝐲V1)7 , (𝑘, 𝑖) ∈ 𝒦. 180 

3. Method  181 

Motion blurs involve shutter speed of camera and moving speed of recorded object. The 182 

failure in feature detection resulting from motion blur can cause misdetection of key features on 183 

vibrating structures, leading to empty observations at certain time instances. Hence, it is important 184 

to develop a deblurring and detection strategy that is suitable for displacement monitoring in shake 185 

table tests. Targeting toward the motion blur issue in shake table tests, a multi-vision approach was 186 

proposed including three modules (as shown in Figure 2): multi-vision photogrammetry module, 187 

global-local deblurring and detection module, and data fitting module for severe motion blurs. 188 
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 189 
Figure 2. Flow chart of the proposed approach for displacement monitoring with muti-vision photogrammetry 190 
module, image deblurring and detection module, and data fitting module. 191 

 192 

3.1. Multi-Vision Displacement Monitoring  193 

In a shake table test, there are situations that not all tags are in the scope of view. For example, 194 

the top floor of a structure might be out of the camera due to excessive displacements, or one 195 

feature for tracking may be blocked by a structure component from one camera view. Sometimes 196 

during experiments, visual features on structures (e.g., artificial patterns, natural features) cannot 197 

be seen clearly or easily due to limited conditions (e.g., poor illumination, unsatisfactory camera 198 

pose, large movement of structure). To cope with these non-perfect situations in practice, a multi-199 

vision strategy with both single-vision and dual-vision choices is needed to obtain full-field 200 

measurement in the post data analysis. In addition, vibrating structure may induce different levels 201 

of blurs viewed in multiple perspectives. Even if motion blur (Figure 1a) is too severe to be viewed 202 

clearly in one perspective, it doesn’t necessarily mean that the blur will be at the same level with 203 

another perspective. The effectiveness of image deblurring of the same visual features may differ 204 
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due to different perspectives. Therefore, multi-vision scheme was chosen to provide information 205 

redundancy for dynamic experiments.  206 

(1) Fiducial Marker Detection and Video Synchronization  207 

Visual features in images used for displacement measurements could either be natural features 208 

(e.g., structural corners) or artificial features (e.g., fiducial markers). Marker-free methods require 209 

no speckle pattern or marker deployment, but they require more computation time to process 210 

images to get features for matching. In contrast, artificial markers are commonly used to obtain 211 

streamlined detection and tracking of points of interest (Spencer Jr et al., 2019). In order to process 212 

videos in a fast manner, a fast feature detection and association (across cameras) algorithm is 213 

preferred for shake table tests. Therefore, fiducial markers (e.g., AprilTag (Olson, 2011)) with 214 

sharp features was on top of the list for this study, as well as a speedy detection algorithm. AprilTag 215 

detection algorithm (Wang & Olson, 2016) includes the first step of quad detection and the second 216 

step of detailed pattern recognition. In the second step, a quad candidate generated from the first 217 

step will be decoded to compare with the tag dictionary in the family to decide if the binary payload 218 

matches with one specific tag pattern. This work aims to address the issue of motion-induced blur 219 

in shake table tests and the proposed method can be integrated with different types of visual 220 

features for CV-based monitoring. For demonstration purpose, AprilTag’s were used as example 221 

for feature detection. 222 

In the first step of tag detection, quad detection may fail if line/quad features are blemished 223 

by motion blur. In the second step, even if a marker is detected as a candidate quad in the first step, 224 

the decoder will filter a marker out if its binary pattern is wrecked by motion blur, leading to no 225 

match in the known tag family (Krogius et al., 2019; Liu et al., 2022). Therefore, there is a need 226 

to restore images and recover the sharp features of the markers before achieving tag detection. 227 

Followed by structural feature detection, video synchronization is of great importance for 228 

muti-vision application, especially for shake table tests. One may argue to have all the cameras are 229 

triggered at the same time in the beginning of the shake table tests to enforce video frames match. 230 

However, the internal clock within each of the cameras will slightly drift during the recording 231 

(especially for non-expensive cameras), making a mismatch of video frame across different 232 

cameras. The mismatched frames will yield considerable error in multi-vision triangulation 233 

computation. Therefore, a post video synchronization is needed before the image processing. In 234 

this study, the ambient sound from shake table tests was recorded on the audio channels and the 235 
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audio recordings were processed and synchronized based on audio waveform matching using 236 

cross-correlation. 237 

(2) Multi-Vision Triangulation 238 

In a dual-vision setting, images from two different perspectives (Figure 1b) can serve as a 239 

strong constraint in 3D scene reconstruction when the two viewing rays corresponding to the same 240 

scene point intersect. The 3D coordinates can then be determined using the direct linear transform 241 

(DLT) method (Abdel-Aziz et al., 2015) based on triangulation. 242 

𝐱" #! = d
𝐴,$ 𝐗+ *

𝐵,$ 𝐗+ *

𝐶,$ 𝐗+ *

h (6) 

where 𝐴,($), 𝐵,($) and 𝐶,($) represent the three rows of the transformation matrix 𝐌8'$9:
(1) for k-243 

th camera. Transformation matrix 𝐌8'$9: = 𝐌$%%	𝐌&'()[𝐑|𝐓]. 244 

In this study, pinhole model (Eq. 1) was used for each of the two points in the two images 245 

(e.g., 𝑝/! , 𝑝0!  in Figure 1b), respectively.  246 

⎩
⎪
⎨

⎪
⎧ 𝑥" #'! =

𝑢" #'!

𝑤" #'!
=
𝐴,$ 𝑋+ *

𝐶,$ 𝑋+ *

𝑦" #'! =
𝑣" #'!

𝑤" #'!
=
𝐵,$ 𝑋+ *

𝐶,$ 𝑋+ *

→ q
( 𝑥" #'!𝐶

,$ − 𝐴,($)) 𝑋+ * = 0

( 𝑦" #'!𝐶
,$ − 𝐵,($)) 𝑋+ * = 0

 (7) 

Combining the equations developed from the two points (Eq. 7), linear algebra equations are 247 

derived to yield a unique solution. The four observations ( 𝑢" #! and 𝑣" #! from each point) make 248 

it a determinate problem to solve. 249 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑥" ##!𝐶

,(#) − 𝐴,(#)

𝑦" ##!𝐶
,(#) − 𝐵,

(#)

𝑥" #"!𝐶
,(") − 𝐴,(")

𝑦" #"!𝐶
,(") − 𝐵,(")⎦

⎥
⎥
⎥
⎥
⎤

=×=

⎣
⎢
⎢
⎢
⎡ 𝑈+ *
𝑉+ *

𝑊+ *
𝑇+ * ⎦
⎥
⎥
⎥
⎤

=×/

= 𝟎 (8) 

where 𝑇+ *  is treated as a scale factor and the homogeneous coordinates of point 𝑃  could be 250 

represented as [ 𝑋+ *	, 𝑌+ *	, 𝑍+ *	, 1],. 251 

3.2. Global-Local Detection and Deblurring (GLDD) 252 
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Restoring images from local blurring of moving objectives is an open problem and image-253 

based deep deblurring methods are yet to be applied in CV-based monitoring of shake table tests. 254 

One focus of this study lies on the design of global-local detection and deblurring (GLDD) module 255 

using deep deblurring to augment the displacement measurement in shake table tests.  256 

(1) Deep Deblurring Model  257 

In the study, a deblurring model was adopted that is a generative adversarial network (GAN)-258 

based deep deblurring model. GANs were investigated for image restoration (Ramakrishnan, 259 

2017) by refereeing to the idea of image translation and the recent development includes 260 

DeblurGAN (Kupyn et al., 2018), DeblurGAN v2 (Kupyn, 2019), and Ghost-DeblurGAN (Liu et 261 

al., 2022). Due to the high speed of processing, models with light-weight convolution neural 262 

network (CNN)-based feature extractors, such as GhostDeblurGAN, are preferred in the study for 263 

efficient image deblurring compared with heavyweight models. Hence, this study adopted a 264 

lightweight deblurring model, DeblurGAN-v2, as the image-restoration component for the 265 

proposed deblurring module. 266 

 267 
Figure 3. Schematic view of the Ghost-DeblurGAN generator architecture with an example of image 268 
processing on fiducial marker attached to a structure. 269 

The generator part of a GAN-based deep deblurring model includes a CNN backbone as 270 

feature extractor and a feature pyramid network for a rich set of global feature maps at different 271 

spatial scales (Figure 3). Compared to DeblurGAN-v2, the CNN backbone of GhostDeblurGAN 272 
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uses GhostNet (Han, 2020) as shown in Figure 3 instead of MobileNet. Cheap module (Sandler, 273 

2018) adopted in the GhostNet CNN backbone includes the pointwise and depthwise separable 274 

convolution layers in sequence to obtain the intrinsic feature maps. These intrinsic feature maps 275 

are comparable to computational expensive 2D convolution layers, but the yielding has a much 276 

faster speed. Compared to the 2D convolution layers in DeblurGAN-v2, the cheap modules in 277 

Ghost-DeblurGAN can help reduce 53.21% of the floating-point operations per second (FLOPS) 278 

during the forward calculation. Hence, Ghost-DeblurGAN model was adopted as the deblurring 279 

model of the proposed framework. The deblurring model was trained using a large-scale YorkTag 280 

dataset (Liu et al., 2022) with paired blurry-sharp tag images of 2074 pairs (1577 in training set 281 

and 497 in test set) that were collected in both indoor and outdoor environments. The deblurred 282 

images (9761 tags within dataset) processed using the trained deblurring model showed an 283 

improved detection rate of 59.1%, compared to detection rate of only 32.0% when using raw 284 

blurred images.  285 

(2) Global-Local Detection and Deblurring (GLDD) Module  286 

A global detection and deblurring (GDD) process on the whole image may be sufficient to 287 

restore images from small motion blurs. However, when the motion blur becomes severer, local 288 

level of deblurring process is needed on the key locations to retrieve sharp visual clue for tag 289 

detection. Therefore, global-level, and local-level image deblurring were automated to augment 290 

tag detection based on the different extent of motion blur. 291 

 292 
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Figure 4. Flow chart of the proposed GLDD module. (note: both artificial and natural features can be 293 
used and AprilTag is adopted as an example) 294 

The proposed GLDD module (Figure 4) includes global-level tag detection/deblurring on 295 

whole video frames and local-level detection/deblurring on cropped images near the key (image) 296 

locations. The assumption for such design is that the attention of a general deep deblurring model 297 

is distracted on nonimportant area when dealing with a relatively large moving foreground (e.g., 298 

the vibrating structure) instead of focusing on the key structural features. If an image crop contains 299 

single features/tags with relative larger foreground, the attention of a CNN-based feature extractor 300 

will be forced to put on the tags over the background and the tags will be less difficult to restore. 301 

For a shake table test, rigid movement occurs at the sliding base. If the structure moves at the same 302 

frequency as the sliding base when subjected to a forced vibration, the moving distance on the 303 

higher levels of the structure over the same time would be larger compared to the sliding base. 304 

Hence, it is reasonable to assume that the blur severity at structure top is larger than the base. 305 

3.3. Data Fitting for Severe Motion Blur  306 

The problem of data fitting was reshaped with a perspective of Kalman filtering (KF) (Welch 307 

& Bishop, 1995) and Rauch-Tung-Striebel (RTS) smoothing (Särkkä, 2008) thinking. In this 308 

study, the dynamic system was described by a partially observed Markov process in the Bayesian 309 

sense by computing the conditional distributions (e.g., 𝑝(𝐱1|𝐱15/) ) using either filtering or 310 

smothering methods (Särkkä & Svensson, 2023).  311 

 312 

(1) Kalman Filter-based Estimation  313 

KF can estimate current state of a dynamical system (𝐱1 ) given previous and current 314 

observations ( 𝐲> , 𝑗 = 1,2, … , 𝑘 ). KF probabilistic state model consists of the conditional 315 

probability distributions of the state and the measurement which are Gaussian distributions: 316 

𝐱1~𝑝(𝐱1|𝐱15/) = 𝐍(𝐱1|𝐀15/𝐱15/, 𝐐15/) (9) 

𝐲1~𝑝(𝐲1|𝐱1) = 𝐍(𝐱1|𝐇1𝐱1 , 𝐑1) (10) 

In order to compute the filtering results, the parameters or states are computed in two steps 317 

recursively: prediction step and correction step. The prediction step in the recursive computation 318 

includes the mean prediction and covariance prediction: 319 
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𝐦1
5 = 𝐀15/𝐦15/ (11) 

𝐏15 = 𝐀15/𝐏15/5 𝐀15/, + 𝐐15/ (12) 

The difference between the predicted measurement and the sensor reading is denoted as 320 

innovation 𝐯1: 321 

𝐯1 = 𝐲1 −𝐇1𝐦1
5 (13) 

The correction step in the recursive computation includes the correction of mean and 322 

covariance of the current state:  323 

𝐦1 = 𝐦1
5 + 𝐊1𝐯1 (14) 

𝐏1 = 𝐏15 − 𝐊1𝐒1𝐊1, (15) 

where 𝐦1
5, 𝐦1 ∈ ℝ3×/ are the mean value of the state 𝐱1 and 𝐏15, 𝐏1 ∈ ℝ6×6 are the covariance 324 

matrix of the measurement 𝐱1 during the prediction and correction steps, respectively. Kalman 325 

gain for the correction is 𝐊1 = 𝐏15𝐇1,𝐒15/ . Covariance matrix for the innovation is	 𝐒1 =326 

𝐇1𝐏15𝐇1, + 𝐑1.  327 

From the previous state 𝐱15/ and current measurement 𝐲1, a prediction and correction can be 328 

performed to estimate current state of 𝐦1  and 𝐏1  sequentially. The next prediction of the 329 

measurement can be obtained as 𝐇1?/𝐦1?/
5  if there is a misdetection of 𝐲1?/, 𝑘 + 1 ∉ 𝒦 . 330 

However, there is no correction step at 𝑘 + 1 due to the lack of measurement which can lead to 331 

growing covariance matrix 𝐏1?/. 332 

(2) Smoother-based Estimation  333 

RTS smoother is the smoothing method of estimating the current state given the whole 334 

measurements instead of just using the current measurement and the previous state. Because on-335 

time measurement is not required in a shake table test, a short-time delay (few seconds or minutes) 336 

is allowed and can be used for post processing. Therefore, the study considered using the available 337 

measurement not that were not just prior to the current steps (1 ≤ 𝑖 ≤ 𝑘 & 𝑖 ∈ 𝒦) but also after 338 

the current steps (𝑘 + 1 ≤ 𝑖 ≤ 𝑇	&	𝑖 ∈ 𝒦). RTS smoother, which is similar to but not same as the 339 

backward algorithm of KF, is used to estimate the missed measurement 𝐲1 =? (𝑘 ∉ 𝒦) using more 340 

measurement in future (𝐲7 , 𝑘 + 1 ≤ 𝑖 ≤ 𝑇	&	𝑖 ∈ 𝒦) in addition to KF. In the study, the KF and 341 

RTS smoother results would be combined with expectation-maximization to estimate the dynamic 342 

state and missing measurement in the shake table tests. Unlike normal RTS smoother that uses all 343 
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the measurements for all time steps, this study would impose a constraint on measurement because 344 

only partial measurements (𝐲7 , 1 ≤ 𝑖 ≤ 𝑇	&	𝑖 ∈ 𝒦) could be provided for smoothing. 345 

The close form smoothing solution for a RTS smoother is: 346 

𝑝(𝐱1|𝐲/:,) = 𝐍(𝐱1|𝐦1
: , 𝐏1:) (16) 

where 𝐦1
" , 𝐏1" are the estimated mean and covariance of the current state 𝐱1 based on the whole 347 

measurements 𝐲/:,.  348 

RTS smoother allows one to refine estimates of current states using the information provided 349 

by later observations. The equations for the backward recursion for RTS smoother include the 350 

prediction step: 351 

𝐦1?/
5 = 𝐀1𝐦1 (17) 

𝐏1?/5 = 𝐀1𝐏1𝐀1A + 𝐐1 (18) 

where 𝐦1 ∈ ℝ3×/ and 	𝐏1 ∈ ℝ6×6 are the mean value and the covariance matrix of the state 𝐱1 352 

computed by the KF.  353 

The correction step in the recursive computation includes: 354 

𝐦1
: = 𝐦1 + 𝐆1(𝐦1?/

: −𝐦1?/
5 ) (19) 

𝐏1: = 𝐏1 + 𝐆1(𝐏1?/: − 𝐏1?/5 )𝐆1 (20) 

where 𝐦1
: ∈ ℝ3×/ and 𝐏1: ∈ ℝ6×6 are the mean and the covariance matrix of the measurement 355 

𝐱1 computed by the RTS smoother. 𝐆1 = 𝐏1𝐀1A(𝐏1?/5 )5/ is the smoother gain for the correction.  356 

4. Experiment: Shake Table Test  357 

To evaluate the proposed multi-vison approach and algorithm for displacement monitoring, a 358 

shake table test was carried out on a three-story aluminum frame (Figure 5). Chirp excitation was 359 

used as the input ground excitation to induce different levels of structural responses. The three-360 

story aluminum frame (Figure 5a) were fabricated with the same story heights of 230 mm. The 361 

width and length of the floors in X and Y directions are 202 mm and 204 mm, respectively. The 362 

detailed views of the column to floor connection are shown in Figure 5b with X direction as the 363 

weak direction and Y direction as the strong direction. The center-to-center distances between the 364 

two adjacent columns are 149.30 mm in X direction and 178.2 mm in Y direction, respectively. A 365 

steel plate with the same mass, 0.66 kg, was affixed to the center of each floor. A shake table 366 

(Quanser Shake Table II) was utilized to provide lateral excitation with a payload area size of 460 367 

mm × 460 mm. The maximum stroke limit of the actuator is ±76.2 mm and the frequency range 368 
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of input motion is 0.5-10 Hz. The proposed approach and LVDT were used to measure dynamic 369 

displacements. Numerical simulation, experimental setup, and feature detection (without GLDD 370 

implementation) are presented as follows. 371 

 372 
Figure 5. (a) 3D schematic view of the aluminum frame, and (b) detailed views of the column-floor 373 
connection in X and Y directions. 374 

4.1. Finite Element Simulation  375 

A finite element (FE) model of the same aluminum frame was developed and analyzed using 376 

OpenSees (Mazzoni et al., 2006) to understand the structural behavior of the physical model. The 377 

same geometry (Figure 5) was used to design the FE model and the columns and floors are 378 

modeled by assigning fiber sections to dispBeamColumn and ShellMITC4 elements in OpenSees, 379 

respectively. The mechanical properties of the aluminum material for the simulation were: yield 380 

strength = 2.5e8 N/m2, modulus of elasticity = 6.9e10 N/m2, Poisson’s ratio = 0.33, density = 2700 381 

kg/m3. Following the experimental model, lumped masses of 0.66 kg were assigned to all the three 382 

stories. The first three modal frequencies in the X direction of the FE model were 5.68 Hz, 16.06 383 

Hz, and 23.48 Hz (see Table 1) based on the modal analysis. Ground excitations using an upchirp 384 

excitation (designed as 0.5-4.5 Hz) and the free vibration after the excitation are simulated on the 385 

FE model. By knowing the modal parameters (e.g., modal frequencies) from FE analysis, the 386 

ground excitation can be well designed for the real experiment to cover different frequency 387 

spectrums while maintaining the safety during the laboratory test. 388 

 389 
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Table 1. Natural frequency (first three modes in X direction) and MAC value comparison between FEM 390 
and output-only system identification results using (virtual) free vibrations and experimental measurements. 391 

Meas. Sys. ID 
Method 

Mode1  Mode2  Mode3 

Freq. 
 (Hz) MAC  Freq.  

(Hz)   MAC  Freq.  
(Hz) MAC 

Virtual  
(FEA) 

Modal 
Analysis 5.68 - 16.06 - 23.48 - 

FDD 5.62 1.00 15.87 1.00 23.19 1.00 

SOBI 5.62 1.00 15.87 0.96 23.07 0.53 

SSI 5.60 1.00 15.85 1.00 23.09 1.00 

Experiment 
(CV) 

FDD 5.15 - 14.95 - 24.35 - 

SOBI 5.15 - 14.99 - 24.59 - 

SSI 5.14 - 15.02 - 24.55 - 

 392 

4.2. Experimental Setup  393 

Twenty-three AprilTags of “25h9 tag family” with unique IDs were attached to the aluminum 394 

frame. Eight tags were attached to the key end locations on the front surface of frame’s floors to 395 

record displacement time histories of the structure during the experiment. The remaining seventeen 396 

tags were attached onto the surface of the table base to perform camera location/pose estimation 397 

and to record the displacement time history of the base. Moreover, the displacement and 398 

acceleration time histories of the base were recorded by the LVDT and accelerometer integrated 399 

with the shake table. 400 

 401 
Figure 6. (a) Photo and (b) schematics of the experimental setup of the shake table test with the aluminum 402 
frame and cameras.  403 
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The aluminum frame (Figure 6a) was subjected to the same upchirp (0.5-4.5 Hz) excitation 404 
(Figure 7) as in the FE simulation (Figure 5) with the maximum base displacement of ±10 mm 405 
and the duration of 15 seconds. Three portable cameras (Figure 6) were used to monitor the shake 406 
table tests: two Sony α6400 cameras (denoted as Cam1 and Cam2) and one Sony α6000 camera 407 
(denoted as Cam3). Multiple DC light-emitting diode (LED) sources were deployed further away 408 
from the shake table for balanced illumination condition. Please note that there is a tradeoff 409 
between different (camera) angles of view: wide-angle allows more context in view while 410 
sacrificing the density of pixels over foreground (structures); narrow angle allows denser pixels 411 
over structures while covers less area. Based on the size of the three-story frame structure, a 412 
medium field view (f=16 mm) was adopted with field of view angles of 72.59° in vertical and 413 
52.27° in horizontal directions. Camera parameters were set as the same for the three cameras to 414 
record high-quality (1920 x 1080 pixel2) videos of the structure in vibration: focal length = 16 mm, 415 
ISO = 2000 (the sensitivity to light), frame rate = 59.94 fps, shutter speed = 1/165 s (6.1 ms), and 416 
camera aperture = f6.3. 417 

 418 
Figure 7. Time histories of (a) the base displacement of the chirp ground excitation (measured by LVDT), 419 
(b) velocity using 1st order differentiation, (c) acceleration using 2nd order differentiation, and (d) the 420 
wavelet transform of the base displacement. 421 

Ambient soundtracks of the test were used for video matching between the three cameras 422 

using cross correlation method to compute the differences in time (Figure 8). Cam1-audio was 423 

used as a reference and the time shifts were +2.54 s (+152 frames) and +2.59 s (+155 frames) for 424 

the Cam2-audio (-video) and Cam3-audio (-video) channels, respectively. After the 425 

synchronization of frames from multiple perspectives, muti-vision triangulation is performed.  426 
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 427 
Figure 8. (a) Synchronization processing using the audio data from the three cameras and cross-428 
correlation, and (b) the detailed view within the time window of (2.5-8 s).  429 

4.3. Tag Detection without GLDD  430 

Evaluation of camera calibrations of the three cameras (Figure 9) were conducted with the 431 

blue dots representing the 3D location in WCS projected onto sample images (using recognized 432 

camera parameters) and red circles representing the detected location in SCS. The average error in 433 

2D SCS between the detection locations [𝑢V7 , 𝑣V7],using AprilTags and the projected locations in 434 

2D SCS were 2.99 pixel for Cam1, 3.53 pixel for Cam2, and 2.97 pixel for Cam3, respectively. 435 

The average errors in 3D SCS between the computed location �𝑋�7 , 𝑌�7 , 𝑍�7�
, and the measurements 436 

by rulers in 3D WCS were 2.03 mm for Cam1, 1.58 mm for Cam2, and 1.72 mm for Cam3, 437 

respectively.  438 

 439 
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Figure 9. Evaluation of camera calibration and pose estimation in the small-scale shake test. (note: red 440 
circles are projection using camera parameters and the ground truth locations in WCS and blue dots are 441 
detected points in SCS) 442 

The detection performance is shown in Figure 10 for the three cameras. A successful detection 443 

event by raw tag detection technique is denoted as a gray solid circle and a failed detection event 444 

is denoted as a red circle for each of the three perspectives at each synchronized frame/time across 445 

the three cameras. The detection performances are shown for different floors from top to bottom: 446 

T0/T1 on the 3rd floor, T2/T3 on the 2nd floor, T4/T5 on the 1st floor, and T6/T7 on the base. When 447 

the motion blur was little (0-12 s, 0-720 frames), the detection performance for the raw tag 448 

detection is satisfactory with all the tags on the frame successfully detected and the success rate 449 

was 100%. As the vibration becomes large enough to cause mild motion blur (12.3-13.2 s), the 450 

tags on the 3rd floor (T0 and T1) were difficult to identify. As the excitation frequency increased 451 

(13.2-14.2 s), tags on the 3rd floor more frequently failed to be detected and tags on the 2nd floor 452 

experience misdetections. During the last one second, when the excitation frequency was close to 453 

the 1st natural frequency of the structure, even tags on the 1st floor were difficult to be detected just 454 

using the raw tag detection technique. T6 and T7 on the base floor showed a 100% detection rate 455 

for all the cameras.  456 

 457 
Figure 10. Tag detection evaluation based on raw image frames from (a) Camera 1, (b) Camera 2, and (c) 458 
Camera 3 in the shake table test. 459 

The vertical lines in Figure 10 delineate the time segments which are associated with different 460 
degrees of motion blur.  As shown in Table 2, the missed rates for the mild level of motion blur 461 
(12-13 s) were 12/480, 13/480, and 13/480 for Cam1-3, respectively. The missed rates for the 462 
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medium level of motion blur (13-14 s) increased to 70/480, 91/480, and 94/480 for Cam1-3, 463 
respectively. The missed rates for the severe level of motion blur (14-15 s) were 151/480 (Cam1), 464 
162/480 (Cam2), and 159/480 (Cam3). Misdetection events occur when the velocities of the tags 465 
were higher on upper floors. In order to obtain more dynamic measurements, GLDD is needed to 466 
enhance the detection rate. 467 

5. Result and Discussion 468 

5.1. Augmented Detection with Multi-Vision and GLDD 469 

As an example, the image-based GLDD process on a video frame is shown in Figure 11. 470 

When there was motion blur on images, the detection algorithm using the raw blurred image 471 

(Figure 11a) could not identify all the tags on the structure, in contrast to a static frame without 472 

motion blur (Figure 9b). However, the detection rate can be improved by using the GLDD module 473 

to an extent. For example, the GDD algorithm could improve the detection on the front surface of 474 

the frame (Figure 11b), especially on the 2nd floor (Figure 11f) that was at the center of the whole 475 

image. However, while the GAN-based deblurring on the whole image could only improve 476 

detection in a certain focused area (e.g., center), the global image restorage was not enough to 477 

make the tags on the 3rd floor detectable (Figure 11h). In addition, the objects that were off 478 

centered (e.g., base) did not necessarily become sharper using the GAN-based deep deblurring 479 

method, which could even impose adverse effects making previously detected tags less detectable 480 

(Figure 11d) after the image restoration. However, the local deblurring on a local crop image 481 

(Figure 11j) could shift more attention on the important features (e.g., tags, structural features) 482 

making the bit features sharper for successful detection (Figure 11j). One may argue that this 483 

improvement might be due to the cropped image size. Experiment result (Figure 11i), though, 484 

proved that using an image crop even around a tag would not necessarily improve success rate. 485 
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 486 
Figure 11. GLDD process steps on one video frame: (a) detection result on raw image, (b) detection result 487 
on globally deblurred image, (c) raw detection result and (d) GDD processed result on the table base, (e) 488 
raw detection results and (d) GDD processed result on the 2nd floor, (g) raw detection result and (h) GDD 489 
processed result on the 3rd floor, (i) detection result on the local image near Tag0, (j) its locally deblurred 490 
image, and (k) LDD processed result. 491 

The limit of the proposed framework was evaluated using the upchirp excitation whose actual 492 

frequency window is about 0.5-6.2 Hz covering the 1st natural frequency of the structure (5.15 Hz 493 

in Table 1) near the end of the experiment. Because the transient displacement input on the table 494 

base included frequency components at the 1st natural frequency near 15 s (Figure 7), the short-495 

time resonance caused the frame to shake violently and resulted in severe motion blurs in videos. 496 

As shown in Figure 12, the detection performance for the GLDD process for each of the camera 497 

is presented with blue-plus symbols denoting successful detections using the GDD and red-cross 498 

symbols denoting successful detection using the local detection and deblurring (LDD). The 499 

detailed performances of GDD and LDD were compared using an ablation study of the different 500 

augmentation strategies (Table 2). When the time was 12-13 s in the shake table test, there were 501 

12 misses, 13 misses, and 13 misses for Cam1-3, respectively. With the GDD, the miss counts 502 

went down to 4, 2, and 10 for the three cameras, respectively. With the additional LDD, the miss 503 

counts went further down to 2, 0, and 0 for the three cameras, respectively, making the total 504 

restoration rates of 10/12 (83.3%) for Cam1, 13/13 (100.0%) for Cam2, and 13/13 (100.0%) for 505 

Cam3. The average restoration rate for the three cameras were 35/38 (92.1%) for mild-level motion 506 

blur. When the excitation frequency increases from around 3.9 Hz to 4.2 Hz during 13-14 s (Figure 507 

7d), the restoration rates for the GLDD process were 36/70 (51.4%) for Cam1, 54/91 (59.3%) for 508 
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Cam2, and 39/94 (41.5%) for Cam3. The average restoration rate for the three cameras was 509 

129/255 (50.6%) for the medium-level motion blur. During the last one second (14-15 s) when 510 

frequency span of the excitation (3.9-6.2 Hz) overlapped with the 1st natural frequency of the 511 

structure (5.15 Hz), the restoration rates by GLDD decreased to 44/151 (29.1%) for Cam1, 49/162 512 

(30.2%) for Cam2, and 26/159 (16.4%) for Cam3. The average restoration rate for the three 513 

cameras was 119/472 (25.2%) for severe-level motion blur. 514 

 515 
Figure 12. Tag detection evaluation with GLDD processing from (a) Camera 1, (b) Camera 2, and (c) 516 
Camera 3 in the shake table test. 517 

After analyzing all the video frames during the whole shake table test (0-15.3 s, 0.5-4.5 Hz), 518 

it was found that the restoration rates of the GLDD were 92/243 (37.9%) for Cam1, 126/281 519 

(44.8%) for Cam2, 82/284 (28.9%) for Cam3. The different performances among cameras were 520 

due to the relative location and pose of cameras with respect to the shaking aluminum frame 521 

showing the effect of the camera placement on achieving high quality CV-based results. The 522 

GLDD process itself restored 94/207 (45.4%) of previous misdetections using raw images. The 523 

multi-vision strategy did take effect in the detection augmentation as well. Take Cam3 for 524 

example, the missed counts were brought from 13 down to 6 during 12-13 s, from 94 down to 60 525 

during 13-14 s, and from 159 to 133 during 14-15 s. For the whole test (0-15.3 s), the total miss 526 

count for Cam3 was brought from 284 down to 207 with a 26.0% drop. With the implementation 527 

of both strategies (multi-vision and GLDD), the total miss count for the experiment is brought 528 

down to only 113 (Table 2) with 75.0% measurements retrieved (from the previous misdetections) 529 

compared to just using raw images from one single camera (e.g., Cam3). 530 
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 531 

Table 2. Hit and miss counts using different tag detection methods for each camera and hybrid setting 532 
during different time windows of the shake table test. 533 

detection 
method 

t: 12-13s (frm: 719-778) t: 13-14s (frm: 779-838) t: 14-15s (frm: 739-899) t: 0-15.3s (frm: 0-921) 

cam1 cam2 cam3 multi cam1 cam2 cam3 multi cam1 cam2 cam3 multi cam1 cam2 cam3 multi 

raw 
det 468 467 467 474 410 389 386 420 329 318 321 347 7133 7095 7092 7169 

mis 12 13 13 6 70 91 94 60 151 162 159 133 243 281 284 207 

GDD 
det 476 478 470 480 428 418 395 436 357 349 331 367 7187 7171 7115 7212 

mis 4 2 10 0 52 62 85 44 123 131 149 113 189 205 261 164 

GLDD 
det 478 480 480 480 446 443 425 461 373 367 347 390 7225 7221 7174 7263 

mis 2 0 0 0 34 37 55 19 107 113 133 90 151 155 202 113 

 534 

5.2. CV-based Displacement Measurement 535 

The pixel coordinates of the tag centers were localized on the collected video frames. For 536 

example, the image-based detection results (from Cam1) for the four floor levels (T0-3rd floor, T2-537 

2nd floor, T4-1st floor, T6-base) are shown in Figure 13. Results from raw-image detection are 538 

denoted as gray dots, additional results from GDD process are denoted as blue “+” symbol, and 539 

the additional results from LDD process are denoted as red “×” symbol. From bottom to top of the 540 

structure, the increasing motion blur made it more and more difficult to detect using raw images. 541 

The GDD retrieved almost all the misdetections (denoted as “miss” in the study) on the 1st floor 542 

(Figure 13c and g) from 14.5-15.0 s (870-900 frames). On the 2nd floor and 3rd floor, the GLDD 543 

performed well from 12.8-13.8 s (775-825 frames) by restoring all the misdetections from raw 544 

images. LDD were more robust dealing with challenge events from 13.8-15.1 s (825–900 frames) 545 

when the motion blur was at a severe level. 546 
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 547 
Figure 13. Localization results of (a-c) u and (e-h) v sensor coordinate system for Tag0 on 3rd floor, Tag2 548 
on 2nd floor, Tag4 on 1st floor, and Tag6 on base using GLDD module. 549 

The time histories of displacement were compared (Figure 14) among the designed 550 

displacement input, LVDT measurement, single-vision measurements, and dual-vision 551 

measurements on the table base. There was a small difference (0.506 mm) between the designed 552 

(displacement) input and the LVDT measurement in the shake table test. This study used LVDT 553 

measurement as the baseline for comparison among vision-based measurements using root-mean-554 

square error (RMSE). RSMEs between single-vision methods and LVDT were 0.881 mm (Cam1), 555 

0.829 mm (Cam2), and 0.222 mm (Cam3), respectively. RSMEs between dual-vision methods and 556 

LVDT were 0.823 mm (Cam1-2), 0.507 mm (Cam1-3), and 0.949 mm (Cam2-3), respectively. 557 

The measurements from single-vision and dual-vision matched well with the LVDT measurement. 558 

In addition, the measured displacements were found consistent for single–vision setting (Figure 559 

15) and dual-vision setting (Figure 16) on different floors with different extent of motion blur, 560 

validating the measurement robustness using multiple perspectives. Dual-vision improved the 561 

confidence in measurement compared with single-vision, although the accuracies of the two were 562 

similar in this study. When using single-vision, a strong assumption is required that allows only 563 

in-plane movement. The reason that both dual-vision and single-vision achieved similar accuracy 564 

in our study is that the excitation only caused in-plane vibration, meeting the required assumption 565 

for single-vision measurement. The implementation of augmentation strategies (GLDD and multi-566 

vision) could address mild- and medium-level motion blur. However, when the motion blur is too 567 
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severe (e.g., vibration near natural frequencies), data fitting is needed to supplement and help 568 

interpolate/estimate the missing measurement.  569 

 570 

 571 
Figure 14. (a) Time histories of designed displacement input and LVDT measurement, (b) the differences 572 
between single-vision measurements and LVDT, and (c) the differences between dual-vision measurements 573 
and LVDT. 574 

 575 
Figure 15. Displacement measured by single-vision method on (a) 3rd floor, (b) 2nd floor, (c) 1st floor, and 576 
(d) base. 577 
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 578 
Figure 16. Displacement measured by dual-vision method on (a) 3rd floor, (b) 2nd floor, (c) 1st floor, and 579 
(d) base. 580 

5.3. Data Fitting with Filter and Smoother  581 

When motion blur was at mild or medium levels in the experiment, the proposed GLDD 582 

method could restore some images for feature detections but could not resolve severe image blurs. 583 

Excessive motion blur was studied using filtering and smoothing methods to estimate the missed 584 

measurements. The virtual measurement on the 3rd floor of the FE model was used to evaluate the 585 

measurement estimation. Two virtual incomplete measurements between the two thresholds 586 

(|𝑑/| ≤10 mm as shown in Figure 17a-b, and |𝑑0| ≤15 mm as shown in Figure 17c-b) were 587 

masked with (𝑘, 𝑖) within the time window of 12 s<𝑡1<15 s. The masked observations were treated 588 

as failed/missed observations ((?1 )B, (𝑘, 𝑖) ∈ ℳ). If the number of measurements for a single 589 

degree of freedom system is one, i can be dropped and the failed/missed observation can be 590 

presented as ( ?1 , 𝑘 ∈ ℳ) . Incomplete measurements were used to restore the unknown 591 

observation. The sampling time was 𝑑𝑡 = 0.0167 s to simulate vision-based measurement. The 592 

missed (virtual) measurements were within 12-15 s excluding the raw detections and the GLDD 593 

detection, to simulate the actual misdetection caused by the severe motion blur. In the KF and 594 

smoother setting, the initial system matrix was set as 𝐀C = [1, 𝑑𝑡; 0,1], the initial guess of the state 595 

was set as 𝐱C = [0,0],, and control was not considered in process equation. The covariance matrix 596 
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of the process 𝐐C was set as [0.5, 0; 0, 0.5], and the dynamic model/transition matrix was set as 597 

𝐑1 = 0.1 mm2 based on the RMSE’s in the evaluation of vision-based methods. 598 

 599 
Figure 17. Data fitting performance of Kalman filter and RTS smoother in two scenarios with (a-b) 600 
medium-level and (c-d) severe-level of (virtual) measurements from FE analysis.  601 

Figure 17 shows the performance of measurement fitting using KF and RTS smoother within 602 

the two incomplete time history data masked from 12-15 s. When there was a small number of 603 

missed measurements, e.g., 12.22% misses among the local time window of 12-15 s as 2.44% 604 

misses among the whole 0-15 s, KF still worked by neglecting the correction step (Figure 17a). 605 

However, when there were considerable number of missed measurements, e.g., 38.89% misses 606 

within the local time window of 12-15 s as 7.78% misses within the whole 0-15 s, the covariance 607 

matrix 𝐏15 for state was enlarged without the necessary correction step. It was observed that the 608 

larger 13.810 mm RMSE occurred for KF estimation in severer blur case (Figure 17c) compared 609 

to 4.720 mm RMSE in mild blur case (Figure 17a). 610 

 611 
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Figure 18. Data fitting performance of RTS smoother in experiment measurements from (a) single-vision 612 
(Cam1) and (b) dual-vision (Cam1-2). 613 

The RTS data fitting took all available measurements into consideration, yielding better 614 
estimation performance (Figure 17b-d) with an improved RMSE of 0.727 mm and 1.640 mm for 615 
both mild and sever cases. The proposed RTS smoother-based fitting method was also 616 
implemented on the CV-based displacement measurements on the 3rd floor in the actual shake table 617 
test. The parameters of the RTS smoother for the experimental measurements were chosen as the 618 
same as the virtual one. As shown in Figure 18, the measurement from the raw detections and the 619 
measurement from the GLDD are denoted as gray dots and blue crosses, respectively. The 620 
estimation using the RTS smoother in single-vision case (Figure 18a) and dual-vision case (Figure 621 
18b) are denoted as red diamond symbols. The data fitting results showed satisfactory estimation 622 
using RTS smoother.  623 

5.4. Application of System Identification  624 

After augmentation from the deblurring module and RTS smoother-based data fitting module, 625 

the measurement result can be used for system identification providing modal information for 626 

future applications (e.g., modal updating, structural damage identification). System identification 627 

can be based on structural displacements, such as free, forced, or ambient vibrations. To 628 

demonstrate the application of CV-based measurements in system identification, three output-only 629 

system identification methods of frequency domain decomposition (FDD) (Brincker et al., 2001), 630 

second-order blind identification (SOBI) (Belouchrani et al., 1997), and stochastic subspace 631 

identification (SSI) (Van Overschee & De Moor, 2012) were compared using both the virtual (from 632 

FE analysis) and experimental free vibration displacements. 633 

 634 
Figure 19. (a) Free-vibration displacements measured by dual-vision CV, and (b-d) the first three modal 635 
shapes from the system identification using FDD, SOBI, and SSI methods. 636 
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Table 1 shows that the identified modal frequencies of the first three modes match well with 637 

the FEM modal analysis from OpenSees. Modal assurance criterion (MAC) values for all three 638 

modes are above 0.96 (except SOBI for mode-3 with 0.53) indicating a satisfactory performance 639 

of FDD and SSI compared to SOBI. System identifications were also performed using the 640 

experimental displacements (e.g., free vibrations in Figure 19a) measured by proposed method. 641 

The identified modal frequencies (see Table 1) are very close with the 1st frequency identified as 642 

5.15 Hz (FDD), 5.15 Hz (SOBI), and 5.14 Hz (SSI). The average differences between the identified 643 

modal frequencies using FDD, SOBI, and SSI with the FE-based modal frequencies are 9.4%, 644 

6.7%, and 4.3% for modes 1, 2, and 3, respectively. Figure 19b-d show the first three mode shapes 645 

using the experimental measurements. It is found that the mode shapes between FDD and SSI are 646 

close to each other, especially for mode-2 and mode-3. In general, the identification results were 647 

consistent among the three methods using proposed multi-vision method. 648 

6. Conclusion  649 

The study proposed a multi-vision monitoring approach using low-cost cameras to measure 650 

structural displacements in shake table tests with the augmentations from novel application of deep 651 

learning-based image deblurring and Rauch-Tung-Striebel (RTS) Smoother. The proposed global-652 

local deblurring and detection (GLDD) module was able to restore clearer images for feature 653 

detection, especially when dealing with mild-level motion blur with average restoration rates of 654 

92.1%. The restoration rates dropped to 50.6% for mild-level motion and further to 25.2% for 655 

severe-level motion with the increasing severity of image blurs. Misdetections due to excessive 656 

motion blur were estimated with filtering and smoothing-based methods using incomplete 657 

measurements. RTS smoother is able to achieve a satisfactory data estimation (with a RMSE of 658 

1.64 mm) outperforming Kalman filter (with a RMSE of 13.81 mm) in the scenario with severely 659 

incomplete observations. RTS smoother helped accurately estimate missed measurement due to 660 

severe blurs, especially when the misdetections were consecutive as typical in shake table tests. 661 

Implementation of GLDD module was tested in a shake table test of a three-story aluminum frame 662 

and was validated with linear variable differential transformer measurement. Results show the 663 

potential of the proposed approach in measuring dynamic displacement. The proposed multi-vision 664 

and GLDD strategies can retrieve 75.0% measurements from previous misdetections (by just using 665 

raw images from one single camera) and the data fitting module can complete the rest. 666 
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The main contribution of the study includes: (1) proposing a multi-vision displacement 667 

measurement approach using low-cost cameras with novel deblurring module and RTS smoother-668 

based data fitting module to address the motion blur issue; (2) studying the effectiveness of the 669 

modules in dealing with different levels of motion blur in shake table tests; (3) providing the 670 

guidelines for using the proposed approach in shake table tests and the augmented displacement 671 

that can be used in the further structural analysis. The proposed method can be employed in a range 672 

of other applications (e.g., structural dynamics, finite element model updating) and be extended to 673 

real-world applications, such as deflection measurement of bridge due to traffic loads, vibration 674 

monitoring on high-rise buildings in earthquakes, and monitoring of relative displacement between 675 

key structural members (e.g., inter-story, beam-column joints). One limitation of the study is that: 676 

although the proposed multi-vision scheme and deblurring module is found to retrieve 677 

misdetections due to mild and median motion blur, but it cannot restore images from excessive 678 

motion blur, which is still a challenging issue for image processing. In addition, the effectiveness 679 

of the proposed method using natural structural feature and under challenging environmental 680 

conditions (e.g., poor illumination, occlusion of features) remains to be studied due to the limited 681 

extent of this work. Future works will focus on studies of, such as effects of challenge conditions 682 

(e.g., illumination, occlusion) in real application scenarios, faster algorithm on displacement 683 

estimation, and error analysis of sensor deployment of the multi-vision system. 684 
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